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EXECUTIVE SUMMARY

Hyperspectral imaging (HSI) sensors provide imagery with hundreds of spectral bands, typ-
ically covering VNIR and/or SWIR wavelengths. This high spectral resolution offers promise for
many applications, but it also produces enormous volumes of data, which may be problematic for
storage and transmission. Lossy compression may therefore be necessary, but application perfor-
mance degradation that results from compression is of concern. This report documents results for
a spectral-spatial lossy compression scheme and a variety of applications: normalized difference
vegetation index (NDVI), integrated column water vapor (CWV), and background classification.

The compression scheme first performs principal-components analysis spectrally, then dis-
cards many of the lower-importance principal-component (PC) images, and then applies JPEG2000
spatial compression to each of the individual retained PC images. Two different rate-allocation
methods, which select the spatial compression ratios, are considered.

The assessment of compression effects considers general-purpose distortion measures, such
as root-mean-square difference. It also examines changes in NDVI and CWV data products and
proposes statistical tests for deciding whether compression causes significant degradations in clas-
sification results.
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1. INTRODUCTION

A hyperspectral imaging (HSI) sensor gathers radiance imagery over a wide range of the electromag-
netic spectrum with high spectral resolution. The sensor produces an N, x N. image in which each pixel
has N, ; 100-200 spectral bands. Such an image is commonly referred to as an N, x Ny x Nc cube.
For example, the HYDICE (Hyperspectral Digital Imagery Collection Experiment [22]) airborne HSI sen-
sor produces 320 x 320 x 210 major frames of 16-bit values, with spectral coverage from 400-2500 nm
and spectral resolution of 5-16 nm per band. Several major frames can be concatenated to form a larger
cube; i.e., four major frames yield a sample HYDICE cube of dimensions 320 x 1280 x 210. HSI thus pro-
vides both spatial coverage and rich spectral information, which facilitates applications such as background

classification, material identification, and target detection.

On the other hand, the sheer volume of data produced by an HSI sensor creates problems of storage
and transmission. The example 320 x 1280 x 210 HYDICE cube requires 153.8 MB of storage. Lossless
compression can usually reduce this requirement by a factor of 2-3, which still puts the storage require-
ment in the tens of megabytes and may be insufficient for timely transmission, dissemination, or archiving.
Lossy compression then becomes necessary. Because lossy compression discards potentially useful infor-
mation, researchers are interested in evaluating its effects on application performance [20, 24, 26]. This
report employs a simple but effective lossy compression scheme and studies its effects on a number of ap-
plications, namely normalized difference vegetation index, integrated column water vapor, and background

classification.

1.1 SELECTION OF COMPRESSION STRATEGY

This report focuses on what can best be termed "general-purpose lossy compression." To place the
report in context, this section discusses the matter of selecting a compression strategy. The selection of a
compression strategy involves factors such as whether or not lossy compression can be tolerated, the re-
quired amount of lossless or lossy compression, and the intended application area. Other factors include
implementation complexity, onboard or ground-based processing, latency, error resilience, cost, and stan-
dardization.

Figure 1 presents a decision flowchart that considers the most general aspects of compression: namely,
lossless or lossy compression, the end application for the decompressed data, and the distortion measure
should lossy compression be required. The other factors mentioned above certainly also play a significant
role, but the flowchart addresses the basic question of whether lossy compression is even necessary, and if
so, whether existing or novel compression techniques are needed.

The top of the flowchart posits the most basic question: Is lossless compression required, and is
it achievable within the problem constraints? If so, lossy compression becomes unnecessary. However,
problem constraints can make lossless compression impractical or impossible. A space-borne HSI sensor
with limited downlink capability is a prime example. Even though the sensor can gather large amounts

of data, there is insufficient bandwidth to transmit all of the data to the ground. In such situations, lossy
compression becomes necessary.

Within the realm of lossy compression, other decisions follow. The second question asks whether



S~Use lossy

Figure 1. Flowchart for selection of compression strategy.

the intended application and/or data products are already known and will never change. If so, then a triv-

ial solution follows: Simply perform the application processing or compute the desired data products, and

then use lossless compression of the results. (This solution assumes that the products have far lower stor-
age/transmission requirements than the unprocessed data.) An example is target detection. One could apply

the detection algorithm to generate a binary-valued image, where cleared (0) pixels indicate "no target" and
set (1) pixels indicate "target." This binary image requires far less storage or transmission bandwidth than

the HSI data from which it was derived.

In most cases, the trivial solution is not a realistic choice. Then the third question comes into play:
Are the distortion measures used in traditional lossy compression methods sufficient? If so, then the wealth
of knowledge, experience, and implementations of traditional lossy compression methods can be employed.

For example, an enormous amount of research and development has been devoted to the theory and practice
of lossy compression under the mean square difference (also called mean square error) distortion measure.

On the other hand, if traditional distortion measures do not apply, then new ones must be developed, along

with suitable lossy compression methods.

1.2 APPROACHES TO LOSSY COMPRESSION AND APPLICATION PROCESSING

Lossy compression followed by application processing is a two-stage process, as depicted in Figure 2.

The first stage performs lossy compression on the original, noncompressed HSI cube, denoted by X. The

compressed version of the cube is a bitstream (not shown) that can be stored or transmitted more efficiently
than Xs decompression of the bitstream yields a decompressed, approximate cube, denoted byX. In the
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and Decompression min D(X, N) processing X min D(X, X) processing X

Sx^
Application Designed for Designed for Redesign for Redesign for
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Figure 2. Lossy compression and application processing.

second stage, application processing is performed onX(. As a result of lossy compression, X is not an exact
replica of X; the inaccuracy between X and X is given by the distortion D(X,X) _> 0. Such distortion
means that the results of application processing onX will generally differ from the results that would have
been obtained if processing had been applied directly to X. Moreover, good application performance - not
storage or bandwidth reduction - is usually the ultimate goal.

We identify four possible approaches to this problem. In the conventional approach, compression and
processing are designed without consideration of one another. Compression attempts to minimize D(XX)
subject to a constraint on the size of the bitstream for the compressed cube. Processing is designed to
operate on the original, noncompressed data X. The conventional approach is based on the idea that, ifX is
a sufficiently faithful approximation of X, then processingX should produce results similar to those from
processing X.

In the backward and forward approaches, one of the two stages is redesigned to accommodate the
other, which is held fixed. Knowledge about the fixed stage is carried backward or forward (hence the
name) into the other stage. In the backward approach, knowledge about an existing processing stage -

intended for use on X - is carried backward into the compression stage, which is altered in an attempt to
make X "fit" as closely as possible with the processing method. Conversely, in the forward approach, the
compression stage remains fixed, and knowledge about its behavior is carried forward into the processing
stage, which is modified to process X instead of X.

Finally, the joint approach redesigns both stages together to obtain the best overall performance.
Some realistic constraints must be introduced to prevent this approach from degenerating into a trivial solu-
tion (cf. Section 1. 1). Consider target detection: With no constraints, a trivial joint solution simply performs
detection on X, produces a binary detection-indicator image X, (e.g., a pixel in X equals 0 to indicate
"target present" or I to indicate "target absent"), and then compressesX losslessly. We adopt the conven-
tional approach for several reasons. First, the backward, forward, and joint approaches tend to be highly
specialized for a single application, while there is a wide variety of HSI applications (e.g., environmental
monitoring, background classification, material identification, target detection, and anomaly detection). The
assumptions and algorithms employed by different applications also vary significantly. The conventional
approach means that the compression stage can be implemented separately and its effects then evaluated on
a number of applications. Second, the nonconventional approaches often introduce additional assumptions
about the characteristics, such as probability distributions, of the data involved. However, characterization
of the statistical properties of HSI data remains an ongoing challenge [19, 29]. Finally, lossy compression

3



and application processing are each sophisticated fields in their own right, and the associated algorithms are
very complicated. The nonconventional approaches can become intractable, and the results are limited to a
particular application. For these reasons, most current work on examining the effects of HSI compression
on applications has taken the conventional approach, and we do so in this report.

1.3 UNDERCOMPRESSION AND OVERCOMPRESSION

We now introduce the intuitive notions of undercompression and overcompression. Increasing the
amount of compression discards more information, which may degrade application performance. As more
information is discarded during compression, the more likely application performance degradation becomes.
If too much information is discarded due to excessive compression, then performance becomes unaccept-
able. Ideally, we would like to compress as much as possible while still maintaining acceptable performance.
We use the terms undercompression and overcompression to describe the failure to reach this optimal bal-
ance.

In undercompression, performance remains acceptable, but we could have compressed even more.
The penalty for undercompression is excessive storage or transmission bandwidth. While such wastefulness
could be expensive, if we realize that we have undercompressed the data, we might be able to compress it
further or increase the compression ratio in subsequent collections.

In contrast, overcompression results in both unacceptable performance and irretrievable loss of in-
formation. Even if we discover that our application is underperforming and requires data with greater
accuracy, there is no way to recover the discarded information. The penalty for such a mistake could be
serious. We therefore assume that undercompression is preferable to overcompression. We choose to err on
the side of caution, and our assessments will reflect this assumption.

1.4 NOTATION

We expand the notation here. As introduced above, we denote the original, noncompressed cube by X
and a decompressed cube by X. Let N, and N. denote the number of spatial columns and rows, respectively,
where a spatial coordinate is given by (x, y), with x C {1, 2,... , Nr}, y E {1,2,..... Ny}. Similarly, we
denote the number of spectral bands by Nc, and we indicate the index of a band by k E {1, 2, ... , N,.}. A
single data value in X is indicated by X[x, y, k]. Letting :i. = (1,2,... ,N,) and f (1,2,... , Ny), we
use X[F, Y, k] to indicate the entire Nx x Ny image of data values in the kth band of X.

With k similarly defined, the notation X[x, y, k] denotes the spectrum associated with spatial location
(x, y). X[x, y, k] is sometimes treated as a column vector in N,.-dimensional Euclidean space. The spectral
angle between two spectra i! and 6 is

Of,)=arccos Oillll 0 l

where (-,.) denotes the usual inner product, and ii'Ill = . Spectral angle is sensitive to differences
in the spectral shapes of il and iý but insensitive to illumination changes: Scalar multiplication of ft or V does
not change 0(il, 6).
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1.5 RATE AND COMPRESSION RATIO

For any given data representation (e.g., X or X), the rate of the representation is defined as rate =
(number of bits required by the representation)/(number of data values represented), which has units of bits
per data value. For hyperspectral data, one often employs units of bits per pixel per band (bpppb). The raw
data values in X are typically stored using B-bit precision (e.g., 8-, 10-, or 16-bit integers), so the rate of X
is B bpppb. Although the values in X also have a bitdepth of B, the associated bitstream is essentially an
identical description of X. Consequently, the rate of X is

R = bitstream length for X [bits]number of data values represented bpppb. (2)

Similarly, define the compression ratio r by

raw size of X [bits]
1' = (3)

bitstream length for X [bits]
Hence, the compression ratio is a dimensionless number. Finally, R and r are simply related by

B
R =-. (4)

1.6 DISTORTION MEASURES

The preceding section discussed the rate R of the (de)compressed dataX. However, k only approx-
imates X. As mentioned in the introduction, the distortion between X andX quantifies the inaccuracy of
the approximation. Most lossy compression systems are designed with the goal of minimizing distortion for
a given rate.

In lossy compression, by far the most common distortion measure is the mean square difference
(MSD),

12
MSD (X,) N ([x, y,k] -k [xyk) (5)

x y k

MSD has a natural interpretation as the power of the error X-X. Additionally, its differentiability facilitates
analysis, and it is easy to compute. We also make use of the root MSD (RMSD),

RMSD(X,X) = VMSD(XX). (6)

Although our lossy compression scheme employs MSD, we can compute additional distortion mea-
sures to see how they relate to application performance. We also use mean absolute difference (MAD) and
mean spectral angle difference (MSAD), defined as

MAD (xx) = I NYN. SEE X[x, y,k] - k[x,y,k] , (7)
x y k

MSAD (X, x) = 1N E 0 (X [x, y, k], kX[X, y, A). (8)
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2. COMPRESSION SCHEME

The compression scheme that we are evaluating consists of the cascade of spectral compression and
spatial compression. Spectral compression is accomplished by applying principal-components analysis
(PCA) in the spectral dimension. The resulting principal-component images (PC images) are then com-
pressed spatially and independently using the JPEG2000 standard. Other researchers [23, 13, 24, 20] have
implemented similar schemes. In this section, we elaborate on the main parts of the scheme, which is
diagrammed in Figure 3.

2.1 SPECTRAL COMPRESSION WITH PCA

In the signal-processing literature, PCA is commonly referred to as the Karhunen-Lve Transform
(KLT). The details of PCA/KLT are well documented in the literature [I I], so we only briefly review it.
Initially, one computes the spectral mean vectorX and spectral covariance matrix Kxx of X. Next, Kxx
is factored into the form KVx = J(ADAT, where A is a diagonal matrix whose diagonal entries are the
eigenvalues Ak of Kxx arranged in descending order (A1 >_ A2 > ... > AN,), and 4D is a unitary matrix
whose columns are the corresponding eigenvectors of Kxx. The energy of X is then

N,7
energy in X ZAk. (9)

k=1

Finally, the transform matrix 4)T is applied to each spectrum in X to create a PCA/KLT cube Y via

Y[x,Yk] = 1 T (X[X, y, - ) . (10)

The kth band Y[Y, y, k] is called the kth PC image.

To compress, some of the PC images in Y are first discarded. The retained PC images may then be
compressed spatially - the subject of Section 2.2 - and stored or transmitted as a bitstream. X and 4,
are also stored or transmitted as side information for decompression. We assume these values are noncom-
pressed, Bide-bit quantities, so they require &ide (N, + N,2)Bside bits.

To decompress, the bitstream is first decompressed to obtain approximations of the retained PC im-
ages, and any discarded PC images are filled with zeroes to make an approximate PCA/KLT cubeY]. Then,
with the aid of the side information X and 4, the decompressed HSI cube k is computed via

Sy, k] = [x,,y, k] X. (1)

PCA/KLT has a number of appealing properties for compression and signal approximation. First,
since ýD is unitary, energy is preserved. This property is useful when the MSD distortion measure is used
because MSD(X, X) = MSD(Y, f). Second, PCA/KLT decorrelates X spectrally: the spectral covariance
matrix K,•. = A, so the PC images are uncorrelated, which is convenient if they are to be processed
independently. Also, the variance of the kth PC image is ( ? Ak. Third, among all unitary transforms,

7
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drawbacks [30]. First, PCA/KLT is data-dependent, so ¢• will change from one cube to another, andX andSmust be stored or transmitted as side information. Second, :T does not have any special structure, so the

computational complexity of PCA/KLT is O(Atc2). In contrast, other data-independent, fast signal transfor-mations (e.g., discrete cosine or wavelet transform) require no side information and have complexities of
O(NC log NC). Third, most of the optimality properties of PCA/KLT are associated with Gaussian data and

MSD distortion. However, HSI data do not usually have a Gaussian distribution [19, 29], and MSD may beinappropriate for HSI applications such as classification and identification.

Nevertheless, PCAIKLT remains an extremely popular and effective tool in the remote-sensing andIossy-compression communities. MSD does offer an analytically tractable distortion measure, and it isreasonable to expect acceptable application performance if X remains faithful to X. Also, the energy-
preserving, energy-packing, and decorrelation properties always hold, and PCA/KLT often provides good

8



compression performance for non-Gaussian data. PCA/KLT forms a crucial part of many HSI compression
schemes [13, 20, 23, 24, 26], including ours.

2.2 SPATIAL COMPRESSION WITH JPEG2000

Because PCA/KLT is performed only in the spectral direction, the PC images are spectrally un-
correlated, but each individual PC image Y[i! i, k] remains spatially correlated. Spatial compression is
therefore applied to each individual PC image I; our compression scheme employs JPEG2000, a state-
of-the-art, wavelet-based image-compression standard [27]. JPEG2000 possesses a number of important
properties. First and foremost, it has significantly better rate-distortion performance than many other,
older image-compression methods, including JPEG. Additional features include progressive transmission,
random-access and region-of-interest coding, and error resilience. The details of the standard go far beyond
the scope of this paper, so we only describe the basic operations here.

Given the kth input PC image Y[I, y-, k], the JPEG2000 compression scheme computes a two-dimensional,
separable discrete wavelet transform (DWT) W[Y, W, k] of Y[Y, Y, k]; our implementation uses the irre-
versible 9-7 wavelet. Next, the wavelet coefficients in W[Y, Y', k] are quantized to produce the quantized
wavelet coefficients Wq[Y, i, k]. Each subband of Wq[Y, y-, k] is then partitioned into rectangular code-
blocks, and each code-block is coded independently using arithmetic encoding in conjunction with an op-
erational rate-distortion optimization algorithm known as EBCOT (embedded block coding with optimized
truncation) [271.

In decompression, arithmetic decoding and dequantization of the code-blocks give the decompressed,
quantized wavelet coefficients Wq[Y, y-, ik]. Then the inverse DWT (IDWT) is applied to produce the approx-
imated PC image '[iX, y-, k].

2.3 RATE ALLOCATION AMONG PC IMAGES

To this point, we have described the two main compression steps: spectral compression via PCA/KLT
and spatial compression of the individual PC images with JPEG2000. Each PC image Y[i., y-, k] can be
assigned a different spatial rate Rspat,k, and the EBCOT algorithm ensures that it will be spatially compressed
to minimize MSD(Y[i,yf, k], Y[Y, y-, k]) for the given value of Rspat,k. Thus, if the overall rate Rkvrl is
given,2 we must still choose the spatial rates {Rspat,k}; this is the problem of rate allocation.

Equal-Rate Allocation The first method uses equal-rate allocation. Given &,vrI, one simply chooses N,
(N < N,.), the number of PC images to retain, and sets Rspatk to be the same for all of them. Because of
the energy-packing property of PCA/KLT, the first PC images contain most of the energy in X, so we keep
PC images 1, 2 ... , N, and discard the remaining ones. The spectral compression ratio is simply

N,rspec - N- (14)

'The PC images are spectrally uncorrelated but not necessarily spectrally independent; however, as in many separable compres-
sion schemes, any remaining dependence is typically assumed to be weak and is ignored.

"2Recall that the equivalent overall compression ratio is rvi = B/R,,,.
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It follows that the retained PC images all have the same spatial rate,

Rspat,k = Rovrj N, k = 1, 2,... , (15)

There is nothing optimal about this method, but it is a simple approach that we use mainly as a basis for
comparison with the allocation method below.

MSD-Optimal Allocation The equal-rate allocation uses the same rate PRpat,k for all retained PC images.
However, the variances of the PC images can differ widely. For example, the first PC image might contain
80% of the energy, and the fifth only 1-2%; less distortion should result by making R•pat,1 greater than
Rspat,.5. This section reviews a common procedure for selecting {!pat,k} for MSD-optimal allocation.

The distortion-rate function D(R) of information theory [5] gives the theoretical lower bound D on the
resulting distortion when data produced by a source are compressed at a rate R. For N independent sources
with respective distortion-rate functions Dk(Rk), the problem of rate allocation [27, 30] is to select {. }
to minimize the overall distortion (1/N,) -k Dk(Rk) subject to the rate constraint (1/N,) 'Ek Rk = Rovrl.

Applying the Lagrange multiplier method to solve this problem yields the equal-slope or Pareto condition
aDk/aRk = -7r*, Vk, where the optimum Lagrange multiplier value rr > 0 is chosen to satisfy the rate
constraint Rovri.

For the purpose of rate allocation in this work, we use MSD distortion and assume each spectrum
X[x, y, k] is the output of a vector Gaussian source with mean vector X and covariance matrix K.Vx.
Since PCA/KLT is a unitary transform, the MSD in the PCA/KLT domain equals the MSD in the usual
HSI domain, and the PC images Y[F, #', k] represent outputs from N, independent Gaussian sources with
respective variances ý = Ak. With this assumption, rate allocation can be accomplished in a straightforward
manner using a bisection search. A review of the rate allocation problem is given in Appendix A.

The assumption of Gaussian data is, of course, a crude approximation. Better allocation results could
be achieved by modeling the distributions of the PC images more accurately. Alternatively, one could
implement an operational allocation method, which compresses and decompresses each PC image over a
range of rates, tabulates the resulting PCA/KLT-domain MSDs, and then performs discrete optimization.
Such methods require a substantial increase in complexity and were therefore not used in this study.
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3. DERIVED DATA PRODUCTS

Remotely sensed HSI data can be used to characterize the environment, both on the ground and in the

atmosphere. In this section, we review two data products derived from HSI data.

3.1 NORMALIZED DIFFERENCE VEGETATION INDEX

The first data product is the normalized difference vegetation index (NDVI). NDVI measures spectral
differences around the red edge (red and NIR wavelengths) and is commonly used to represent the health
and amount of vegetation [28]. The NDVI is defined as

NDVI = p(NIR) - p(red) (16)

p(NIR) + p(red)'

where p(NIR) and p(red) represent near-infrared and red band reflectances, respectively.

The rationale behind (16) can be understood as follows. The chlorophyll present in healthy vegetation
absorbs visible light in the red wavelengths and reflects infrared radiation. Consequently, the surface spectra
of healthy and/or dense vegetation generally exhibits a decrease in the radiance at red wavelengths and a
large increase at near infrared (NIR) wavelengths. The spectra of other land-cover types may have high
values in the NIR or low values in the red, but vegetation tends to be unique in having this combination.
The numerator in (16) follows. The denominator in the equation normalizes for factors such as slope and
changes in illumination [17).

NDVI takes on values between -1 and +1. Larger positive values represent increasingly healthy or

dense vegetation. Values near zero indicate rock or bare soil, and negative values are associated with water,
snow and ice, or barren terrain. NDVI is employed to distinguish vegetation from other land cover types
and to assess the density, health, or stress of vegetation. It also finds use in the prediction of droughts and
identification of areas where the risk of fire is high.

In this work, the red band is taken as the average intensity from 626.19 nm to 692.88 nm, and the
near-infrared band from 779.14 nm to 807.91 nm. These bands correspond to the spectral resolution of
LANDSAT bands 3 and 4, respectively. Additionally, in this report, NDVI was computed using radiance
rather than reflectance values. Since the atmospheric path radiance is low in both the red and NIR bands,
atmospheric correction was deemed unnecessary [25, Ch. 5].

3.2 COLUMN WATER VAPOR

The second data product considered is integrated column water vapor (CWV). CWV measures the
water vapor content in a vertical path from the Earth's surface to the sensor. CWV is expressed in units of
grams per centimeters or more often just centimeters of water vapor [7]. CWV is commonly used in the
atmospheric compensation process to define the atmospheric transmission due to water vapor [9].

Following [7], the at-sensor radiance for a down-looking airborne sensor can be expressed as

Lsmsn.•or(A) = Lsn(A)T(A) p(A) + Lpath (A), (17)
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Figure 4. Atmospheric transmittance of water vapor for nominal atmospheric conditions.

where L,,n(A) is the solar radiance, r-(A) (0 < T-(A) _< 1) is the total atmospheric transmittance from the
sun to the surface to the sensor, p(A) is the surface reflectance, and I4ath((A) is the path-scattered radiance.

Figure 4 displays the atmospheric transmittance due to water vapor across the VNIR/SWIR for nom-
inal atmospheric conditions. Water vapor in the atmosphere absorbs solar and surface-reflected radiance at
wavelengths near 720, 820, 910, 940, 1140, 1380, 1880, and 2180 nm [7]. Around these wavelengths, the
atmospheric transmittance -r(A) displays sharp troughs. The wavelengths associated with these troughs are
called water vapor absorption bands. The figure shows two absorption bands - at 940 and 1 40 nm - in
light blue. Typically, -r(A) is greater than 0.90 or even 0.99 outside of the absorption bands, while it drops
sharply to near 0.50, 0.20, or near zero in the absorption bands. The spectrally flat, high-transmittance bands
adjacent to an absorption band are known as atmospheric windows.

The surface reflectance p(A) of natural materials generally varies smoothly in the VNIR region. In
particular, p(A) is approximately linear across the water vapor absorption bands. If the transmittance were
not attenuated in an absorption band, then the at-sensor radiance Lensor(ZA) would be approximately linear
between the atmospheric windows associated with the absorption band.

CWV is estimated based upon the above observations. A number of methods for estimating CWV ex-
ist [7, 8, 9, 14, 15], so we describe the general ideas only. First, radiance values in the atmospheric windows
and those in the absorption bands are used to estimate a pseudo-transmittance N(A) in the absorption bands.
This step exploits the linearity of p(A) described above. Second, i-(A) is compared with transmittances
derived from radiative transfer models with differing CWV amounts. The estimated CWV is then extracted
from the model whose transmittances agree most closely with N(A).

Some methods [7, 14] employ the absorption bands at 940 and 1140 nm, while others [9] use an
additional absorption band at 910 nm. The other absorption features are usually not exploited, either because
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they do not attenuate T(A) sufficiently or because their attenuation of T(A) does not vary much with CWV.
This work used the method described by Griffin and Burke [9).
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4. EFFECTS ON DERIVED DATA PRODUCTS

Experiments were performed on an HSI cube from AVIRIS (Airborne Visible Infrared Imaging Spec-
trometer). AVIRIS is a whiskbroom HSI sensor with 614 pixels in the cross-track direction and spectral
coverage of 400-2500 nm in 224 bands with a nominal spectral resolution of 10 nm/band. The data was
collected from an airborne platform at 20 km altitude over Moffett Field, located near the San Francisco Bay
in California. The ground sample distance for this data is approximately 20 m. The original radiance cube
has dimensions of 614 x 512 x 224, with each radiance value stored as a 16-bit integer. The original cube,
designated by X, thus occupies 134 MB. Figure 5 shows an RGB image of the original scene.

X was compressed using the method in Section 2 and a number of different compression settings.
The PCA/KLT side information (X and (P) required Bsid, = 32 bits per value, so Sside = 1612800 bytes.
For the equal-rate allocation method, AT was set to 5, 10, or 20, and overall compression ratios r(,,,, of 50,
100, or 200 were chosen. The MSD-optimal allocation method also used •vr1 = 50, 100, and 200.

Figure 5. RGB image of Moffett Field AVIRIS cube.

4.1 COMPARISON OF RATE ALLOCATION METHODS

This section discusses results that illustrate the differences between the two rate-allocation methods.
First, the upper graph in Figure 6 shows the eigenvalues k* associated with the PC images Y[., W, k] after
PCA is performed on X. As is characteristic of PCA, the eigenvalues appear in descending order, which
shows the well-known energy-packing property of PCA. The lower graph in the figure shows the percentage
of the total variance of X formed by the PC images. The percentages for only the first 30 PC images are
shown. The blue curve shows the individual percentage for each PC image (cf. (12)), and the red curve
shows the cumulative percentage (cf. (13)). The first PC image Y[:F, W, 1] accounts for about 60 percent of
the total variance in X, the second PC image Y[iY, Y, 2] for about 30 percent, and so forth. From the red
curve, the first five PC images account for over 99% of the total variance in X.

Figure 7 contains three graphs, each showing the resulting spatial compression ratios for a different
overall compression ratio Towvr. For the equal-rate method, the graphs show essentially horizontal lines since
each retained PC image is compressed at the same spatial ratio (cf. (15)). For a given overall compression
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Figure 6. Eigenvalues and variance percentage for Moffett Field.
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ratio, retaining more PC images means that the retained PC images must be compressed more.

However, for the MSD-optimal rate allocation method, each graph shows a monotonically increasing
curve. In general, the MSD-optimal allocation method compresses the first 2-3 PC images less than the
equal-rate method. The first PC image is spatially compressed the least, the second PC image is compressed
slightly more, and so forth. The trend of increasing spatial compression ratios agrees with the fact that
higher-index PC images contain a smaller portion of the total variance of X (cf. Figure 6). Compared to the
lower-index PC images, they can be compressed at higher spatial compression ratios without affecting the
overall MSD as much.

Next, Figure 8 shows two different distortion measures, RMSD(X,.X) and MAD(XX), plotted
against the overall compression ratio. The connected curves show the trend for a given rate allocation
method. The three unconnected points show the distortion and effective overall compression ratio when only
PCA is used, and the retained PC images are not compressed spatially. Under both RMSD and MAD, the
MSD-optimal rate allocation method performs best. Compared to using PCA only (no spatial compression),
the MSD-optimal method yields overall compression ratios about five times higher. Compared to the equal-
rate allocation method, the MSD-optimal method produces a much lower distortion at the same overall
compression ratio.

4.2 SPECTRAL DISTORTION

Figure 9 shows the average power in X versus wavelength. There are four distinct water vapor ab-
sorption bands around 940, 1100, 1370, and 1850 nm. The green bars indicate the wavelengths used in the
computation of NDVI (Section 3. 1 ), and the light blue bars indicate the wavelengths used in the computation
of CWV (Section 3.2).

Finally, Figure 10 shows plots of the ratio of the average power to the average MSD versus wavelength
for different overall compression ratios and allocation methods. Not surprisingly, as the compression ratio
increases from 50 to 200, the power-to-MSD ratios decrease across the entire spectrum. Consistent with
Figure 8, the MSD-optimal method has the highest power-to-MSD ratio in almost every band and in all
three graphs. At the NDVI wavelengths, the power-to-MSD ratio for the MSD-optimal method is several
decibels higher than that for the equal-rate allocation methods. At the CWV wavelengths, the MSD-optimal
method has the highest power-to-MSD ratio when rov0 j = 50. However, when rovrl = 100, this ratio becomes
comparable to that for the equal-rate method with NV, = 10, and with r(vrl reaches 200, this ratio falls several
decibels below the ratio for the equal-rate method with IV = 10. In addition, in the remaining absorption
bands (near 1370 and 1850 nm), all of the allocation methods produced comparable power-to-MSD ratios.

These observations can be understood by considering the graph in Figure 9 and the allocation meth-
ods. As a result of PCA, the errors due to lossy compression are distributed across all bands. The absorption
bands - particularly those around 1370 and 1850 nm - already have low power, so they show corre-
spondingly lower power-to-MSD ratios than other wavelengths. With regard to the allocation methods, the
MSD-optimal method attempts to minimize the MSD; it does not consider the power-to-MSD ratio in any
particular band. The equal-rate method does not perform any optimization at all. If the MSD is roughly
evenly distributed among all bands, the low-power bands will suffer more than high-power bands in terms
of their power-to-MSD ratios.
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4.3 EFFECTS ON NORMALIZED DIFFERENCE VEGETATION INDEX

Figure 11 shows the NDVI image resulting from the original, noncompressed HSI data cube. The
white-to-green color scale shows more positive values of NDVI in deeper shades of green and smaller or
negative values in white.

NDVI difference images with and without compression are shown in Figure 12. Each column com-
pares the difference images for different rate allocation methods. From top to bottom, the methods are:
equal-rate with N, = 5, equal-rate with N, = 10, equal-rate with N, = 20, and MSD-optimal. Across each
row, the desired overall compression ratio increases from 50 to 100 and then to 200. The color bar shows
that differences closer to zero are white, with increasing positive and negative differences shown as deeper
shades of red and blue, respectively.

The figures show that the equal-rate method with Y, = 5 has the greatest NDVI differences across all
compression ratios, while the MSD-optimal method has the smallest differences at each compression ratio.
In addition, the MSD-optimal method with a compression ratio of 100 has differences comparable to the
equal-rate method with N, = 10 and a compression ratio of 50.

Figure 13 shows a graph with the MAD between the NDVI image from the noncompressed HSI data
and the NDVI image after compression for a variety of compression settings. In addition, the unconnected
points show performance for PCA only and no spatial compression. The MSD-optimal rate allocation
method outperforms the other allocation methods. In agreement with the previous figure, the MSD-optimal
method with rovrl = 100 has MAD only slightly higher than the equal-rate method with rovrl = 50. Referring
back to Figure 10, we see that the MSD-optimal method maintains a higher power-to-MSD ratio in the bands
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Figure II. NDVI image for Moffett Field.

used for computing NDVI.

4.4 EFFECTS ON INTEGRATED COLUMN WATER VAPOR

The next set of results examines the effects of compression on the CWV product. The CWV image
for the noncompressed HSI data appears in Figure 14, where the blue color scale shows higher CWV values
as brighter shades of blue. Since the CWV calculation is not reliable over bodies of water, they have been
blocked out in the image.

Figure 15 shows CWV difference images. The top row, which shows results for the equal-rate al-
location method and N, = 5, indicates that retaining only 5 PC images is likely insufficient regardless of
how much or how little they are compressed spatially. Results with the equal-rate method are better when
10 or 20 PC images (second and third rows) are retained. The MSD-optimal method performs best when

rov,, -- 50; at this compression ratio, it retained 25 PC images. At 7bvrl = 100, the MSD-optimal method
performs comparably to the equal-rate method with IV = 10 and slightly better than the equal-rate method
with N. = 20. Finally, at rovrl = 200, the equal-rate method with N' = 10 has the best performance, and
the MSD-optimal method retained only 5 PC images and so its CWV difference image looks very similar to
those in the top row.

The MAD between the CWV image from the noncompressed HSI data and the CWV images after
compression is graphed in Figure 16. The individual points for PCA only with no spatial compression show
small MAD values when either 10 or 20 PC images are retained but a sharp increase in MAD when only
5 PC images are retained. The connected curves show results when spatial compression and the different
rate allocation methods are applied. With an overall compression ratio of fifty, the MSD-optimal method
and equal-rate method with NY = 10 or N. = 20 perform comparably. As the overall compression ratio
increases, the MSD-optimal method begins to perform worse than the equal-rate methods.

Recall from Figure 7 that for overall compression ratios of 50, 100, and 200, the MSD-optimal method
retained 28, 13, and 5 PC images, respectively. Hence, at a compression ratio of 200, the MSD-optimal
method cannot perform any better than only using PCA and retaining the first 5 PC images. In addition,
Figure 10 shows that in the bands used to compute CWV, the power-to-MSD ratio for the MSD-optimal
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Figure 13. NDVI difference vs. compression ratio for Moffett Field.

method drops below that for the equal-rate method with M = 10 and N' = 20.

4.5 DISCUSSION

These results indicate that the example data products (NDVI and CWV) can tolerate a certain amount
of lossy compression. They also show that, compared to using PCA alone without any spatial compression,
PCA and spatial compression of the retained PC images can offer significant gains in compression without
degrading results.

In addition, the importance of proper rate allocation among the PC images is evident. In general, the
MSD-optimal rate allocation method produced better results than the equal-rate allocation method. With
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Figure 14. CWV image for Moffett Field.

24


